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The Nash theorem on the existence of equilibrium points in N-person non- 
cooperative games in normal form is generalized to the case when there is a 
continuum of players endowed with a nonatomic measure. The mathematical 
tools are those used in mathematical economics, in particular, markets with 
a continuum of traders. The main result shows that under a restriction 
on the payoff functions there exists an equilibrium in pure strategies. 

KEY W O R D S :  Games; nonatomic games; equilibrium point, set-valued 
function; fixed point. 

A nonatomic game is a game where the set of the players is endowed with a 
nonatomic measure. The purpose of this paper is to define a nonatomic game 
in a normal form, to define its equilibrium points in the sense of  Nash, t4) 
and to prove their existence. 

Nonatomic  games enable us to analyze a conflict situation where the 
single player has no influence on the situation but the agregative behavior 
o f " l a rge"  sets of  players can change the payoffs. The examples are numerous: 
Elections, many  small buyers from a few competing firms, drivers that  can 
choose among several roads, and so on. 

In our model the set of  players T is the unit interval [0, 1] endowed with 
Lebesgue measure A. Each player has to choose one of  n activities. We 
represent an activity (or a pure strategy of a player) by a basis vector e~ in R ", 
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the n-dimensional Euclidean space. The vector er is the vector in R ~ with 
one as ith coordinate and zero otherwise. Denote 

P ~ I x -- (xl ' ' ' ' 'xn)~ Rn ' xi ~ O' l ~ i ~ n' ~ xi = 

Then P ~- conv({el ,..., en)) (cony stands for convex hull) and it is the set of 
mixed strategies of each player. A T-strategy is a measurable function 
k from T to P. Thus, ~ ~ (k~,..., ~ ) ,  where ~i is a measurable real-valued 
function from T to [0, 1]. In this case k i is Lebesgue-integrable and we write 
fs k for (fs ~( t )  d)t,..., fs ~n( t ) d)O. As usual we neglect the distinction between 
integrable functions and equivalence classes of such functions. Hence, a 
T-strategy ~ belongs to L~(T • {1,..., n}). Let /5 denote the set of all T- 
strategies endowed with L~ weak topology. The set/5 is a compact, convex 
subset of a locally convex linear topological space. 

Before defining the payoff function we define an auxiliary (utility) 
function, zi(., .) : T • /5 __~ R n. Now, ~i(to, k) describes the utility of player 
to when a.e. player chooses ~(t) and to chooses e~. So the payoff to player t, 
h~, is defined as 

h # )  = ~( t ) .  ~(t, ~) 

where x �9 y denotes the inner product in R" for x, y ~ R% 
Thus a nonatomic game in a normal form is defined completely by the 

function ~i. 
We shall need the following conditions: 

(a) For all t in T, zi(t, -) is continuous on P. 

(b) For  all k in /3  and i, j ---- 1 ..... n, the set {t ~ T I ~li(t, ~) > ~(t,  k)} 
is measurable. 

A T-strategy k is in equilibrium iff, a.e., 

Vp 6 P h,(k) ~ p �9 z~(t, ~) 

T h e o r e m  1. A nonatomic game in a normal form fulfilling conditions 
(a) and (b) has a T-strategy in equilibrium. 

A T-strategy ~ is called pure iff, a.e., k(t) ~ {ez ,..., e,~), i.e., almost each 
player uses a pure strategy. Our main result is the following theorem. 

T h e o r e m  2. If  in addition to the conditions of Theorem 1, a.e., 
~(t, ~) depends only on fr~, then there is a pure T-strategy in equilibrium. 

The importance of Theorem 2 lies in the fact that in many real, gamelike 
situations, a mixed strategy has no meaning. The additional condition is 
not too restrictive, as is explained later in remark 2. 
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A game in a no rma l  fo rm is finite if  there is a finite number  of  players  
and each player has a finite number  of  pure  strategies. 

Corollary (Nash theorem):  Every finite game has a strategy in 
equilibrium. 

We shall show that  this is a simple corol lary of  Theorem 2 (and not  o f  
Theorem 1). 

P r o o f  of  T h e o r e m  1. For  player t and T-strategy k, set 

B(t,  ~) ~- { p  ~ P i Vq ~ P : p " a(t, ~) >~ q �9 ~(t, ~)} 

This is the set o f  the best answers for  p layer  t when T-strategy ~ is 
chosen. Obviously  B(t ,  ~) is convex and nonempty .  

Cla im ~. Fo r  each t the graph of  B(t,  -) is closed in P • P. 
Given t, let ~,  --* ~o, Pn -+  Po and for  each q in P, 

p,~ �9 z~(t, ~ )  >~ q �9 a(t, k(t, ~ ) ,  n = 1, 2 ..... 

Because o f  the continuity of  z~(t,-), the inequali ty holds in the limit. So, 
the p r o o f  of  claim 1 is completed.  

We define a set-valued funct ion ~ : P --* P by 

o~ (~) = {3~ ~ t3 I a.e. ~(t)  ~ B(t ,  ~)} 

Cla im 2. Fo r  each :~, ~(~) is nonempty  and  convex. 
Define for  i = 1,..., n 

T~ = {t ~ T]  aJ(t, N) ~< a~(t, N), j = 1,..., n} 

One has Ui~z T i  -~ T and for  t ~ Ti , ei E B(t ,  ~). Because of  condi t ion 
(b), T~ is measurable .  Let  $1 = /'1 and Si = i=z Ti\(Uj=I Tj), i = 2,..., n. The  
T-strategy 3~, defined by 33(t) = e~ for  t E S~, belongs to ~(~). The  convexity 
of  B(t ,  ~) implies tha t  o f  c~(k). 

Cla im 3. The graph  of  ~ is closed in P • P. 
Let  ~ --~ :~o, . ~  --* 33o and for  n ~> 1, 3~ ~ ~ (~) .  Assume per  absu rdum 

tha t  for  a nonnull ,  measurable  subset S o f  T, Po ( t ) ~  B( t ,  ~0). Fo r  each t, 
B(t ,  ~0) is a convex hull o f  a subset o f  the set {e 1 ,..., e,}. So there is a nonnull ,  
measurable  subset V o f  S and a subset {eq ,..., eik} of  { e  I . . . .  , e~} such tha t  
for  each t ~ V, B(t ,  ~o) = conv({eq .... , eik} ) and P0(t) ~ B(t ,  ~o). Hence, there 
i sp  in P such tha t  p ".C0(t) > 0 a n d p  - e~j = 0, j = I .... , k. S o p  �9 fv.r > 0, 
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but for each ~9 in P with .~(t) e B(t, x0) for t e V, p �9 l ye  ----- 0. Now, .r -+ :9o 
implies ~[vr = lim. f v p . .  Using Aumann's m Proposition 4.1, we get 
lira. fv:9.C J'v lira. Sup{33.(t)}, where 

f lim, Sup{:~,(t)} = I f  ~ I a.e. in V, 3~(t) is a limit point of 
V V 

{r t" 

But because of claim 1, each limit point of {3~.(t)}~=z belongs to 
B(t, k0)--a contradiction. 

To complete the proof of Theorem 1, notice that by claims 2 and 3, 
a fulfills the conditions of the Fan-Glicksberg (z.a) fixed-point theorem and 
if :~ e ~(k), then obviously ~ is an equilibrium. 

Proof of Theorem 2. By Theorem 1, there is a T-strategy ~ in 
equilibrium. We have to prove that there is a pure T-strategy :~ such that 
f r  k = ffr:~ and, a.e., 33(0 ~ B(t, ~). As was mentioned previously, 

B(t, k) = conv({ei [ ei ~ B(t, :~)}). 

From Aumann's (1) Theorem 3, we have 

(e) fr B(t, r = fr {ei [ ei ~ B(t, ~)} 

if {(t, ei) I e~ ~ B(t, ~)} is a Borel subset of T • R n, where 

fr B(t, ~ ) =  tfr33 1:~ EP  and a.e. f~(t)~B(t, x)l 

fr{ei l ei~B(t '  k)} = l f r r  l r  l ei~ B(t, r 

Of course, fr ~ belongs to the left side of (c). To complete the proof, 
we shall demonstrate the Borel measurability condition. The set-valued 
function {ei [ ei ~ B(., ~)} attains a finite number of values, and each of them 
is a finite subset of R* and hence a Borel set in R ~. Given a subset {ei 1 ..... e~,} 
of {el ..... en} we have to show that {t [ conv({eq ..... ei~} = B(t, &)} is Borel 
subset of T. The last statement is implied by condition (b). 

Proof of the Corol lary.  Let m be the number of players in the finite 
game. For i = 1,..., rn let Kj be the set of pure strategies of player j. We 
assume that ] Ks 1, the cardinality o fKj ,  is finite. We assume also, without loss 
of generality, that the payofffunction ofplayerj  has nonnegative values. We 
represent this finite game by a nonatomic game where n = 5=11 Ks I. Let 
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(Tj)j~=~ be a partition of Twi th  )~(T;) -- 1/m for everyj.  Given t in Tj and a 
pure T-strategy 2, we have to define zi~(t, 2). I f / r  Kj ,  we define zir 2) = --1. 
If  i ~ Kj ,  we define zir 2) as the payoff obtained by player j  in the finite game 
when he plays the pure strategy i and player j ' ( j "  @ j )  plays i ' ~  Kj, with 
probability m)t({t ~ Tj, ~(t) ~ i'}). We choose an arbitrary k in K~, and attach 
to it the probability m;~({t ~ Tj, l ~(t) = k or ~(t) r K~,}). Thus zl is well defined 
and depends on f r  ~ only. The definition of  a implies also that if ~ is a pure 
T-strategy in equilibrium, then, a.e. in Tj ,  ~(t) s K~, for every j. Hence, a 
pure T-strategy, which exists by Theorem 2, induces a strategy in equilibrium 
in the finite game. 

R e m a r k s  

1. The dimension of  R n means that the number of activities of all 
players is uniformly bounded on T and it does not mean that all the players 
have the same number of different choices. 

2. Theorem 2 can be generalized in the following manner: Instead of 
"~(t, 2) depends only on f r  ~" once can assume "z~(t, 2) depends only on 
{fr i ~}~=1", where {Tr 1 are Lebesgue-measurable subsets of T, k = 1, 2 ..... 

-.r ~/c A similar proof  applies (because the last restriction is equivalent to t r 
is a measurable partition of T.") 

3. The set of all pure T-strategies is dense in P (in the weak topology). 
Hence the function a(t,-), which is continuous on /5, is determined by its 
values on the pure T-strategies. So the following problem is suggested: 
"Is the conclusion of Theorem 2 true under the conditions of Theorem 1 ?" 
We shall answer negatively by the following example: Let n = 2 and for 
i = l, 2 we define u~(t, 2) = Ii tei - -  f[0.~) ~ it, where [] �9 [j denotes the distance 
in R ~. Assume that ~ is in equilibrium and that, a.e., ~(t) ~ {ea, e~}. First, we 
show that the set S = {t [ ffo,~) ~ = �89 § e2)} is null. Otherwise there is an 
interval It, s ]C  S with 0 < r < s < 1. This, in turn, implies that the density 
of  the set E~ --~ {t ~ Jr, s]l ~(t) = e~} in the interval It, s] is �89 for i = 1, 2, 
which is impossible. [There is no Lebesgue-measurable set E on the real line 
such that for every Lebesgue-measurable set F in It, s], )t(E ca F) = �89 

Let 0 < s ~< 1 be such that Ir se~ - fro,a) ~ II < H sel - fEo,~) ~ []. Because 
of the continuity in t of  fr0.0 ~ there is a first r such that r < s and for 
all r < t  ~<s the inequality Hte2-- f to .~)  ~[] <lltea-f~0,~)r holds. 
Hence for a.e. t ~ [r, s] the assumption that 2 is in equilibrium implies that 
~(t) = ea ; a contradiction to the inequality in s. QED. 

4. Although the main result of this work is Theorem 2, there is some 
interest in Theorem 1. One may ask, and the referee did, whether the 
techniques of the proof  of Theorem 1 ~a) could yield a stronger result. The 
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answer is positive. The generalization of Theorem 1 is obtained not by 
weakening one of the explicit assumptions (a) or (b) but by weakening the 
assumption that P is a simplex (i.e., a convex hull of linearly independent 
vectors in R n) and that a(t, .) is affine on P. Instead we assume that for each t 
in T the set P, is a compact, convex subset of R n. A T-strategy is a measurable 
function ~ from T to R n, s.t., ~(t) ~ P~ for all t. Now, P denotes the set of all 
T-strategies, and set G = {(t, x) ~ T • R '~ 1 x ~ P~}. 

Using Aumann's m Theorem 2, P is nonempty if we assume the following 
condition: (A) G is a Borel subset of R "+1 and the real-valued function on 7", 
t ~-~ max{1l x II I x ~ Pc} is integrable. 

Next we assume the existence of utility function a : G •  R and for all 
t in Twe define h~ : /3 -+  R by he(k) = a(t, k(t), ~). The assumptions equivalent 
to (a) and (b) needed in the proof  of existence of a strategy in equilibrium 
are: Assumption (B): for all (t, x) in G, ~(t, x, .) is continuous and quasi- 
concave on t5. Assumption (C): For all ~ in/3, a(., -, ~) is Borel-measurable 
on G. We define, of course, ~ to be in equilibrium if, a.e., he(k) ~> a(t, x, ~) 
for all x in Pc �9 The proof  of existence in this generalized model follows that 
of Theorem 1. (The proofs of claims 2 and 3 are more complicated in this 
case; Aumann's m Theorem 2 is needed in the proof  of claim 2.) 

We also mention that in this model under the additional assumption of 
Theorem 2 there is a T-strategy k in equilibrium, s.t.a.e., ~(t) is an extreme 
point of Pc �9 Almost the same proof  applies. 
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